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Abstract   

The paper uses Markov Chain method to predict appliance data at consumer level. Traditionally Markov chain 
has been used in Stock Market Forecasting and man-power planning [1] The paper initially briefs the 
mathematical methodology and then details how the model performs as compared to original data. Steady 
state Transition Matrix was derived and then was used to create a simulated model. Autocorrelation between 
different states was compared between simulated model and original discrete data. Two step Markov Chain 
was also developed to predict jump in 2 units of time. We also compute Chi-square analysis and Auto-
correlation models to compare how the markov model performs as compared to original discrete Data. Steady 
State Probability vector has been derived and it was found that there is 0.89 probability that individual will be 
in very low energy state .On the other hand there is a probability of 0.02 that consumer would be in Very High 
Energy Consumption state. This shows consumers are energy conscious and would prefer to consume lower 
energy. 

1. Introduction 

There are many prediction models that are used to predict and forecast complex engineering 
problems including ARIMA (Auto Regression and Moving Average), Auto-Correlation, Auto 
Regression and Recurrent Neural Networks. This paper presents how we can use Markov Chain 
based model for prediction of energy based on time series data. Markov Chain based models have 
been extensively used in complex engineering problems including Queueing Problems. Towards this, 
the paper presents how we can use Markov Chain to predict states of energy consumption. Energy 
states with high consumption can be predicted which can be used to alert the customer and balance 
the grid demand -supply accordingly. 

The Markov chain is a special case of the stochastic process [1]. Markov is a stochastic process with 
the Markov property that was named after Andrei Andreevich Markov, a Russian mathematician [2]. 
Recently, the methods have been used to estimate the matrix of transitive from the observing states 
of the system [2]. It is a random process where all information about the future is contained in the 
present state  

Definition 1 ([23]). The sequence {Xt , t ≥ 0} is said to be a Markov chain if for all state values 𝑖, 𝚤ଵ̇, 𝑖ଶ. 
. , 𝚤̇௧∈ I, then P 𝑋௧ାଵ= j | X = 𝑖, 𝚤ଵ̇, 𝑖ଶ . . ., where 𝑖, 𝚤ଵ̇, 𝑖ଶ. . . are the states in the state space i. This type 
of probability is called Markov chain probability. This indicates that regardless of its history prior to 
time n, the probability that it will make a transition to another state j depends only on last previous  
state 𝑖௧ .Here it should be noted that whether the particle was in that state for only a short period or 
a long period of time does not matter. For discrete-time Markov chain is a Markov process where 
the state space is finite. 

In addition, the main components in developing the Markov chain model are state transition matrix 
and probability; both of which will summarize all the essential parameters of dynamic change[3]. We 
represent the time-series energy-data as Discrete Finite Markov Chain model. We can check if the 
chain in irreducible and then find the transition probability and stationary distribution. Stationary 
distribution refers to long run probability of being in state j at any time n is equal to 𝛱̅. That is if 



P(X{𝑥 = 𝐽}̅ = 𝛱. We then simulate the data using markov Chain model and then calculate the auto 
correlation coefficient to evaluate the efficacy of simulated model. 

2. Data Set 

We take the energy appliance data set from Kaggle. The data set is at 10 min for about 4.5 months. 
The house temperature and humidity conditions were monitored with a ZigBee wireless sensor 
network. Each wireless node transmitted the temperature and humidity conditions around 3.3 min. 
Then, the wireless data was averaged for 10 minutes periods. The original data set is multi-variate 
dataset has taken 27 features/measurement vectors. In this case we just want to predict the 
appliance energy given the past energy usage using Markov Chain. Hence for ease we take appliance 
energy data as the only feature for prediction 

3. Approach  

The following Diagram illustrates the method as below  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 1: Overall Approach for Markov Chain based Prediction Model  



 

4. Detailed Mathematical Construct  
 

   Step 1 Create bins of Continuous time Series Data. 

 We used bins of difference of 200 Units and created 6 bins from energy consumption as per table 
below. These states have been derived by creating bins of 200 units each  

Energy Consumption  State 
Less than 200 Units  1 
200-400 Units  2 
400 Units -600 Units  3 
600 Units-800 Units 4 
800 Units-1000 Units 5 
1000-1200 Units  6 

Table 1: Energy States 

    

Step 2 & Step 3: Empirical Distribution and Creating a Transition Matrix 

Empirical Distribution represents the count of occurrences of each state. N represents the state 
jumps as defined by the Markov chain, indicates the observed frequency of transition or jump from 
one state to another state. These are given by N which represents actual number of occurrences of 
state [𝑖, 𝑗] 

 

𝑁 = 

𝑁ଵଵ ⋯ 𝑁ଵ

⋮ ⋱ ⋮
𝑁ଵ ⋯ 𝑁

 … . . 𝑒𝑞(1) 

Let P be a transition matrix or stochastic matrix that describes all the transition probabilities for each 
state of the Markov chain model. Hence, P is denoted as below. 

 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑃 = 

𝑃ଵଵ ⋯ 𝑃ଵ

⋮ ⋱ ⋮
𝑃ଵ ⋯ 𝑃

 … 𝑒𝑞 (2) 

A state 𝑖  is said to be recurrent if and only if there is a probability of 1 that a process, starting in 
state 𝑖   will at some point return to state 𝑖. And finally, in a related definition, a state i is said to be 
transient if the probability that the process, starting in state i, will at some point return to state i is 
less than 1. In the terms that we have already defined, for a state 𝑖 to be transient there exists 
another state that is accessible from 𝑠𝑡𝑎𝑡𝑒 𝑗   , but the two states do not communicate and 
therefore are not in the same class. 
 

Step 4 Compute Stationary Distribution and Compare it with Empirical Distribution. 

Steady State Probability -For this step, stationary probability distribution and mean return time can 
be obtained for Markov process probability values. Stationary probability distribution will describe 



the behaviour of energy in long term forecasting where the chain is sufficient for a long period of 
time with steady-state probabilities that are independent from initial conditions. 

Given we have taken a finite State chain, we find each state is communicating to almost every class 
at some state and chain happens to be irreducible markov chain. Also, chain is persistent or 
recurrent if 𝑓(𝑖𝑖) = 1 

 

𝑓(𝑖𝑖) =  𝑓(𝑛) = 1

ே



… eq(3) where f[ii] is the probability of 1st return to state i if it begins at i  

 

Also, since chain re-starts again infinitely often. We then want to compute the expected number of 
times it returns to original state. We can  
𝐸(𝐼 = 1)  𝑤ℎ𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑤ℎ𝑒𝑟𝑒 𝑖𝑡 started. We can also compute if chain is 
recurrent   if we know  𝑃-Probability of transition from state 𝑖 to 𝑖 

 𝑃[𝑁] =

ఈ

ୀଵ

𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦. . 𝑒𝑞(4)  

 

Considering chain is persistent, we find a probability vector which when passed through n state 
transition matrix will result in same probability Vector. This means  

𝑊 ∗ 𝑃[𝑁] = 𝑊. . 𝐸𝑞(5)   

𝑤ℎ𝑒𝑟𝑒 𝑁𝜖𝑅,P[N] is N step Probability Matrix which is row stochastic. 
 

We can derive individual probability for each final state alternatively using below equation  

𝑣ୀ  𝑃[𝑛]



∗ 𝑣ூ … 𝑒𝑞(6) 

We compute steady state probability vector by iterating over different steps until there is no change 
is Probability Vector. Hence at steady state W[n+1]=W[N] 

Step 5 Creating a new Model from Markov Simulation and Comparison with original Model 

Since we have a transition matrix T with 𝑃[𝑛]=x where  0 < x<1, we can simulate  random number 
and if random number falls in the range of probability it can create a target state based on random 
number generation. This will help us evaluate other possibilities of different states during different 
point of time. 

We then simulate a new model and compare the two models 

Step 6 Auto-Correlation Comparison between original model and simulated model 

We then compute the autocorrelation model between the simulated model and the original Markov 
model and compute the autocorrelation for each state. Auto-correlation for each state for a given 
model is computed as below. Here �̅� represents the average value of state in the discrete time series 
markov state model. 



𝑟[𝑘] =
∑ (𝑥 − �̅�)(𝑥ା − �̅�)ି

ଵ

∑ (𝑥 − �̅�)ଶே
ଵ

 … 𝑒𝑞(7) 

 

We then compare the autocorrelation of each state for the original discrete markov model as 
compared to original model. 

 

Step 7 Chi Square Analysis of Model 

The chi square analysis is used to evaluate how two step model PIJ[2]  compares with actual count of 
2 step jumps in the Actual Markov Chain.  This is denoted by N[i,j][2].We compute this by counting 
the Observed Counts from jumps  from different states in two steps. We then compare this with two 
state probability matrix denoted as P[2]. P[2] can be derived using the below equation  

𝑃[2] = 𝑃ଶ  𝑒𝑞(8) 

𝑃[2] 𝑟epresent the two step probability matrix. 

Ho: Null Hypothesis – The expected Model probabilities  𝑝ଵ𝑝ଶ𝑝ଷ𝑝ସ𝑝ହ𝑝  is a good model for N[I,J][2] 

H1:  Alternate Hypothesis – At-least one state probability is different  

We then compute the observed and expected frequency gap between the two to check if the-two 
step transition model represent the model. In case the value is less than 0.05 we reject the null 
hypothesis that Observed model is good model to the expected model. 

Statistically p-value is the probability of obtaining a result as extreme as, or more extreme than, the 
result actually obtained when the null hypothesis is true. We can also say p value is the probability 
value that we reject the null hypothesis given the null is true. This happens when p value is less than 
0.05. 

5. Case Study 

We now show case our experimental findings from the UCI Data Set on Energy Appliance Data. We 
have used R studio to build Markov Models  

Step 1: Count of Discrete State Value 

We generate different States from time-series data. The count of different States are as below. We 
generate the below by counting the discrete counts of time-series data 

    
              State      1      2     3      4    5     6 
              Count     17761 1330   138    12    2    492 

                                                      

                                                  Table 2- Frequency Count-Occurrence of States  

 

Step 2 and Step 3: Stochastic Matrix and Empirical Distribution  

Stochastic Transition Matrix  



The following is the transition Matrix that has been arrived for appliance energy. We have named 
energy state 6 as “Very-Very High Energy State” and State 1 as Very Low Energy state. 

 

 

 

     Table 3: 6 State Transition Matrix for Energy Consumption: VL denotes 1 and VVH denotes 6  

 

The markov State Model as derived after creating a transition Matrix for original time series discrete 
finite state model. 

 

                                           Figure 2- Original Markov Transition Model 

 

Step 4  

Comparison of Frequency of Occurrence of States in Markov State Model as compared to Simulated 
Model. We see a similarity in occurrence of states in the original Empirical model and simulated 
model 



 

 

 

 

 

 

 

 

 

Figure 3 Comparison of Steady State Values of Different States with Empirical Distribution [Top figure 
shows -empirical distribution and bottom shows steady state probability] 

 

Step 5 Simulated Time Series Vs Original Series  

We can find some differences between original and simulated time series model as explained in Step 
4 section of the paper. The simulated time series have been derived by random generator and if the 
random generator has a probability less than p it chooses the original path and if it is more than that 
it chooses the alternative path. 

 

                                           Figure 4-Original and Simulated Series  

Step 6 Comparison of Auto Correlation Model 



We compute Auto-Correlation Coefficients for Different States of Original and Simulated Time-series 
data. This has been shown in table 4 using equation 7 

Series\,State  1 2 3 4 5 6 
Original 
Time Series  

1.0 0.4629 0.2748 0.1956 0.1628 0.150 

Simulated  
Series  

1.00 0.44664711 0.28257130 0.19759903 0.133 .08780 

                 Table 4- Auto-Correlation Comparison between Simulated model and Original Model 

 

Step 7 – Chi-Square Analysis -p values for each state & Two Step Expected Probabilities  

We compute two step Transition Matrix P[2] as below and get value as below 

 

Table 5: Two Step Transitional Probabilities 

The value below in the table shows if the there is statistically significant difference between 
observed frequency and 2 state transition probabilistic model shown above. The observed 2 state 
jumps are computed by counting number of jumps from state 𝑖, 𝑗 in two steps where 𝑖, 𝑗𝜖{1 ⋅ … 6} 

 

Series\State   1 2 3 4 5 6 
p-value 0.2243 0.2243 0.2424 0.2851 0.3062 0.2243 
 Chi-Square 30  30 24 12 6 30 

        

           Table 6- Chi-square Test Value to compare observed 2 state jumps to Probabilistic Model 

6. Conclusion 

In this paper, a markov-chain based prediction model is developed to predict the state of energy 
power consumption. This model can be used in energy forecasting. However, unlike other models, 
this model would predict state and not the absolute values of energy consumption. We have 
focussed on single step probabilistic model as well as two step transition model. This is particularly 
useful when energy and utility companies levy tariff from customers with different consumption 
level. 

Based on the over all results-it can be said that if customer has low or very low energy consumption, 
would continue to have low /very low energy consumption. As a future study, this model needs to 
be compared with different seasons to create a bi-variate Finite Markov Chain and see any 
correlations between them. 
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Appendix 

data=read.csv('C:\\Project\\NEU\\Probability\\Markov Chain\\energydata_com
plete (1).csv') 
x=data$Appliances 
summary(x) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   10.00   50.00   60.00   97.69  100.00 1080.00 

for(i in 1:length(x)){ 
  if (x[i]<200){ 
    data$state[i]=1 
  } 
  else if ((x[i]<400) & (x[i]>200)){ 
      data$state[i]=2 
    } 
  else if ((x[i]<800) & (x[i]>600)){ 
      data$state[i]=3 
    } 
  else if((x[i]<1000) &(x[i]>800)){ 
      data$state[i]=4 
  } 
  else if ((x[i]<1200) & (x[i]>1000)){ 
      data$state[i]=5 
    } 
  else { 
      data$state[i]=6 
    } 
} 
 
dfnew<-data.frame(data$state,data$Appliances) 
library(markovchain) 

## Warning: package 'markovchain' was built under R version 3.6.3 

## Package:  markovchain 
## Version:  0.8.5-2 
## Date:     2020-09-07 
## BugReport: https://github.com/spedygiorgio/markovchain/issues 

library(diagram) 

## Warning: package 'diagram' was built under R version 3.6.3 

mcFit <- markovchainFit(data=data$state) 
Frequency=table(dfnew$data.state) 
Frequency 

##  
##     1     2     3     4     5     6  
## 17761  1330   138    12     2   492 



emp=rep(0,6) 
for(i in (1:6)){ 
  emp[i]=Frequency[i]/sum(Frequency) 
} 
emp 

## [1] 0.8999746643 0.0673929567 0.0069926526 0.0006080568 0.0001013428 
## [6] 0.0249303268 

mcFit <- markovchainFit(data=data$state) 
mcFit 

## $estimate 
## MLE Fit  
##  A  6 - dimensional discrete Markov Chain defined by the following stat
es:  
##  1, 2, 3, 4, 5, 6  
##  The transition matrix  (by rows)  is defined as follows:  
##            1          2           3            4          5           6 
## 1 0.96869546 0.02083216 0.001463882 5.630314e-05 0.00000000 0.008952199 
## 2 0.31729323 0.54736842 0.025563910 7.518797e-04 0.00000000 0.109022556 
## 3 0.05797101 0.26086957 0.246376812 3.623188e-02 0.00000000 0.398550725 
## 4 0.00000000 0.08333333 0.333333333 0.000000e+00 0.00000000 0.583333333 
## 5 0.00000000 0.00000000 0.500000000 5.000000e-01 0.00000000 0.000000000 
## 6 0.25458248 0.39714868 0.079429735 8.146640e-03 0.00407332 0.256619145 
 

library(msm) 

## Warning: package 'msm' was built under R version 3.6.3 

TableJumpt=statetable.msm(dfnew$data.state,dfnew) 

## Warning in prevsubj != subject: longer object length is not a multiple 
of 
## shorter object length 

TableJumpt 

##     to 
## from     1     2     3     4     5     6 
##    1 17205   370    26     1     0   159 
##    2   422   728    34     1     0   145 
##    3     8    36    34     5     0    55 
##    4     0     1     4     0     0     7 
##    5     0     0     1     1     0     0 
##    6   125   195    39     4     2   126 

p=matrix(, nrow = 6, ncol = 6) 
for (j in (1:6)){ 
  x[j]=sum(TableJumpt[j,]) 
  for (i in(1:6)){ 
     p[j,i]=TableJumpt[j,i]/x[j] 
  } 
} 
 



par(mfrow=c(2,1)) 
state=matrix(c(1.0, 0.0, 0.0,0,0,0),nrow=1,ncol=6) 
state 

##      [,1] [,2] [,3] [,4] [,5] [,6] 
## [1,]    1    0    0    0    0    0 

p 

##            [,1]       [,2]        [,3]         [,4]       [,5]        [
,6] 
## [1,] 0.96869546 0.02083216 0.001463882 5.630314e-05 0.00000000 0.008952
199 
## [2,] 0.31729323 0.54736842 0.025563910 7.518797e-04 0.00000000 0.109022
556 
## [3,] 0.05797101 0.26086957 0.246376812 3.623188e-02 0.00000000 0.398550
725 
## [4,] 0.00000000 0.08333333 0.333333333 0.000000e+00 0.00000000 0.583333
333 
## [5,] 0.00000000 0.00000000 0.500000000 5.000000e-01 0.00000000 0.000000
000 
## [6,] 0.25458248 0.39714868 0.079429735 8.146640e-03 0.00407332 0.256619
145 

par(mfrow=c(1,1)) 
plotmat(p,pos = c(2,4),  
        lwd = 1, box.lwd = 2,  
        cex.txt = 0.5,  
        box.size = 0.10,  
        box.type = "circle",  
        box.prop = 0.3, 
        box.col = "light blue", 
        arr.length=.5, 
        arr.width=.3, 
        self.cex = .4, 
        self.shifty = -.01, 
        self.shiftx = .17, 
        main = "Markov Chain Transition Matrix") 

 

sum(p[2,]) 

## [1] 1 

stateHist=state 
dfStateHist=data.frame(state) 
state2=matrix(data=NA,nrow=50,ncol=6) 
for (i in (1:50)){ 
  state2[i,]=state%*%p 
    state=state2[i,] 
  }  
 

#Simulation 
 



tranistionmatrix=p 
byRow=TRUE 
EnergyMarkov2 <- new("markovchain", states = c("VL", "L", "M","H","VH","VV
H"),transitionMatrix = tranistionmatrix,name = "Energy State") 
EnergyMarkov2 

## Energy State  
##  A  6 - dimensional discrete Markov Chain defined by the following stat
es:  
##  VL, L, M, H, VH, VVH  
##  The transition matrix  (by rows)  is defined as follows:  
##             VL          L           M            H         VH         V
VH 
## VL  0.96869546 0.02083216 0.001463882 5.630314e-05 0.00000000 0.0089521
99 
## L   0.31729323 0.54736842 0.025563910 7.518797e-04 0.00000000 0.1090225
56 
## M   0.05797101 0.26086957 0.246376812 3.623188e-02 0.00000000 0.3985507
25 
## H   0.00000000 0.08333333 0.333333333 0.000000e+00 0.00000000 0.5833333
33 
## VH  0.00000000 0.00000000 0.500000000 5.000000e-01 0.00000000 0.0000000
00 
## VVH 0.25458248 0.39714868 0.079429735 8.146640e-03 0.00407332 0.2566191
45 

#Simulated Markocv Chain  
EnergyState <- rmarkovchain(n = length(data$Appliances), object = EnergyMa
rkov2, t0 = "VL") 
# conversion to factor 
EnergyState=as.factor(as.character(EnergyState)) 
sim1=EnergyState[1:19200] 
sim2=c() 
#Converting simulation to 0-4 states with numerical valiues 
for(i in (1:length(sim1))){ 
  if (sim1[i]=='VL'){ 
    sim2[i]=1 
  } else if (sim1[i]=='L'){ 
    sim2[i]=2 
  } else if(sim1[i]=='M'){ 
    sim2[i]=3 
  } else if (sim1[i]=='H'){ 
    sim2[i]=4 
  } else if(sim1[i]=='VH') 
    sim2[i]=5 
    else { 
      sim2[i]=6 
    } 
} 
   
# Calcualtion of x.bar 
frequency.sim=table(sim2) 
frequency.sim 



## sim2 
##     1     2     3     4     5     6  
## 17181  1338   154    10     1   516 

xbar1=frequency.sim[1] 
xbar2=frequency.sim[2] 
xbar3=frequency.sim[3] 
xbar4=frequency.sim[4] 
xbar5=frequency.sim[5] 
xbar6=frequency.sim[6] 
frequency.sim[1] 

##     1  
## 17181 

x.bar=(1*xbar1+2*xbar2+3*xbar3+4*xbar4+5*xbar5+6*xbar6)/sum(frequency.sim) 
x.bar 

##        1  
## 1.221875 

# Calculation of xbar 
sim3=sim2[1:500] 
plot(1:length(sim3),sim3,type='l',ylab='State',xlab="Simulated States") 
dfnew2.state<-dfnew$data.state[1:500] 
plot(1:length(dfnew2.state),dfnew2.state,type='l',xlab="Original Discrete 
Time ",ylab="State") 

 

plot(1:length(sim3),sim3,type='l',xlab="Simulated Time Series ",ylab='Stat
e') 
#Correlation Coefficient  
x1=Frequency[1] 
x2=Frequency[2] 
x3=Frequency[3] 
x4=Frequency[4] 
x5=Frequency[5] 
x6=Frequency[6] 
xbar=(1*x1+2*x2+3*x3+4*x4+5*x5+6*x6)/(sum(Frequency)) 
xbar 

##        1  
## 1.208259 

length(dfnew$data.state) 

## [1] 19735 

k=6 
p=matrix(0,nrow = length(dfnew$data.Appliances),ncol = 6) 
d=matrix(0,nrow = length(dfnew$data.Appliances),ncol = 6) 
r=rep(NA,6) 
#Autocorrelation for original timeseries  
for (j in (1:k)){ 
  for (i in (1:(length(data$Appliances)-(j-1)))){ 



    p[i,j]=(dfnew$data.state[i]-xbar)*(dfnew$data.state[i+j-1]-x.bar) 
    d[i,j]=(dfnew$data.state[i]-xbar)*(dfnew$data.state[i]-x.bar) 
  } 
  r[j]=(sum(p[,j]))/(sum(d[,j ])) 
   
} 
r 

## [1] 1.0000000 0.4629951 0.2748963 0.1956352 0.1689551 0.1503227 

 

#Autocorrelation for Simulated Series 
p1=matrix(0,nrow = length(sim2),ncol = 6) 
d1=matrix(0,nrow = length(sim2),ncol = 6) 
r1=rep(NA,6) 
r1 

## [1] NA NA NA NA NA NA 

#Autocorrelation  
for (j in (1:k)){ 
  for (i in (1:(length(sim2)-(j-1)))){ 
    p1[i,j]=(sim2[i]-x.bar)*(sim2[i+j-1]-x.bar) 
    d1[i,j]=(sim2[i]-x.bar)*(sim2[i]-x.bar) 
  } 
  r1[j]=(sum(p1[,j]))/(sum(d1[,j ])) 
   
} 
r1 

## [1] 1.0000000 0.4467976 0.2930287 0.2056178 0.1543828 0.1189881 

#Two Step Transition Matrix for Original Time Series  
p22=tranistionmatrix%^%2 
p22 

library(expm) 
w2=p22 
w2 

##            [,1]       [,2]        [,3]         [,4]         [,5]       
[,6] 
## [1,] 0.94734473 0.03552481 0.003041112 0.0001961734 3.646517e-05 0.0138
5671 
## [2,] 0.51027401 0.35625176 0.029665971 0.0022438159 4.440837e-04 0.1011
2036 
## [3,] 0.25467515 0.36957485 0.111189315 0.0123729516 1.623425e-03 0.2505
6430 
## [4,] 0.19427122 0.36424062 0.130589942 0.0168921577 2.376103e-03 0.2916
2996 
## [5,] 0.02898551 0.17210145 0.289855072 0.0181159420 0.000000e+00 0.4909
4203 
## [6,] 0.44256085 0.34600579 0.055230394 0.0073180743 1.045292e-03 0.1478
3961 



#Let N be the numer of states in the original observation 
# Actual Jumps 2 States 
alpha=0 
count=matrix(data=0,nrow=6,ncol=6) 
count 

##      [,1] [,2] [,3] [,4] [,5] [,6] 
## [1,]    0    0    0    0    0    0 
## [2,]    0    0    0    0    0    0 
## [3,]    0    0    0    0    0    0 
## [4,]    0    0    0    0    0    0 
## [5,]    0    0    0    0    0    0 
## [6,]    0    0    0    0    0    0 

count[[1,2]] 

## [1] 0 

r=rep(0,length(dfnew$data.state)) 
for (l in (1:(length(dfnew$data.state)-2))){ 
     r=dfnew$data.state[l+1] 
     m=dfnew$data.state[l+2] 
     p=dfnew$data.state[l] 
     if ((p!=r) &(r!=m)){ 
       count[[p,m]]=count[[p,m]]+1 
       count[p,m]=count[[p,m]] 
     }  
} 
count 

##      [,1] [,2] [,3] [,4] [,5] [,6] 
## [1,]  145   63   45    2    0   89 
## [2,]   53   67   13    5    1   36 
## [3,]   16   41    4    0    0    3 
## [4,]    3    4    0    0    0    3 
## [5,]    0    1    0    0    0    1 
## [6,]   69   20    6    3    0   32 

count[4,] 

## [1] 3 4 0 0 0 3 

w2[4,] 

## [1] 0.194271224 0.364240618 0.130589942 0.016892158 0.002376103 0.29162
9956 

chisq.test(count[1,],w2[1,]) 

chisq.test(count[2,],w2[2,]) 

chisq.test(count[3,],w2[3,]) 

chisq.test(count[4,],w2[4,]) 

chisq.test(count[5,],w2[5,]) 

chisq.test(count[6,],w2[6,]) 
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